Skip to content
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical Intelligence
      • Surgical Robotics
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Upcoming Events
    • Webinars
    • Meetups
    • News
    • Blog
  • The company
    • About us
    • Careers
Menu
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical Intelligence
      • Surgical Robotics
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Upcoming Events
    • Webinars
    • Meetups
    • News
    • Blog
  • The company
    • About us
    • Careers
Contact

Lanes Detection System

One of the theoretically simplest applications in automatic driving technologies is traffic lanes detection: however, due to the need of a very robust solution to insure the safety of travelers under any road, weather and light condition, even a simple application presents challenges which need to be addressed. In the following demo, we see the example of a lanes detection system which recognizes the meaningful boundaries and uses them to recognize when the car is moving from its position within a lane towards one of the lines which delimitate it.

 

 

Lane lines are clearly detected and the system knows with perfect certainty when the car is approaching one of them, when it is crossing it and when it drives on a different lane then the one it came from. The challenges deriving from this kind of images can take multiple form: bad weather and even sunshine can make it more difficult to detect the lines; in addition, these lines are generally dashed, hence the need for keeping track of it even where the line is interrupted; finally, detect the position of a line even when another vehicle or any other obstacles prevent the camera from seeing it, in full or in part.
The system needs to be perfectly calibrated in order never to loose contact with the ideal straight lines delimitating both sides of the lane, regardless of weather or traffic conditions. There is no need for more than one camera, in order to make this camera calibration system robust enough. The algorithm takes into account the perspective given by the incoming images and exploits the properties of vanishing points, computed by identifying the two parallel lines. Knowing at every single moment the width of the lane leaves the developer with a relatively simple geometric problem to resolve.
As a result, the system knows when the car (either driver or driverless) is deviating from its lane, voluntarily or not: this machine learning based solution is very robust, as obviously required by safety standards. RSIP Vision works on several ADAS-related projects, generally more complex than traffic lanes detection. If you want help solving the challenges of your application, contact our consultants and read about our Advanced Driver Assistance Systems work.

Share

Share on linkedin
Share on twitter
Share on facebook

Related Content

Percutaneous Nephrolithotomy

PCNL – Planning and real-time navigation

Prostate Tumor Segmentation

Implementing AI to Improve PI-RADS Scoring

RAS Navigation

Tissue Sparing in Robotic Assisted Orthopedic Surgeries

Procedural Planning in urology

Procedural Planning in Urology

C Arm X-Ray Machine Scanner

Radiation Reduction in Robotic Assisted Surgeries (RAS) Using AI

Visible spectrum color

Hyperspectral Imaging for Robotic Assisted Surgery

Percutaneous Nephrolithotomy

PCNL – Planning and real-time navigation

Prostate Tumor Segmentation

Implementing AI to Improve PI-RADS Scoring

RAS Navigation

Tissue Sparing in Robotic Assisted Orthopedic Surgeries

Procedural Planning in urology

Procedural Planning in Urology

C Arm X-Ray Machine Scanner

Radiation Reduction in Robotic Assisted Surgeries (RAS) Using AI

Visible spectrum color

Hyperspectral Imaging for Robotic Assisted Surgery

Show all

RSIP Vision

Field-tested software solutions and custom R&D, to power your next medical products with innovative AI and image analysis capabilities.

Read more about us

Get in touch

Please fill the following form and our experts will be happy to reply to you soon

Recent News

PR – Intra-op Virtual Measurements in Laparoscopic and Robotic-Assisted Surgeries

PR – Non-Invasive Planning of Coronary Intervention

PR – Bladder Panorama Generator and Sparse Reconstruction Tool

PR – Registration Module for Orthopedic Surgery

All news
Upcoming Events
Stay informed for our next events
Subscribe to Our Magazines

Subscribe now and receive the Computer Vision News Magazine every month to your mailbox

 
Subscribe for free
Follow us
Linkedin Twitter Facebook Youtube

contact@rsipvision.com

Terms of Use

Privacy Policy

© All rights reserved to RSIP Vision 2021

Created by Shmulik

  • Our Work
    • title-1
      • Ophthalmology
      • Uncategorized
      • Ophthalmology
      • Pulmonology
      • Cardiology
      • Orthopedics
    • Title-2
      • Orthopedics
  • Success Stories
  • Insights
  • The company